Procedure to calculate 95% CL_s contour

Following the naming convention in the supplemental data file, six columns are denoted as $log_{10}(\sin^2(2\theta_{14}))$, $log_{10}(\Delta m_{41}^2)$, χ_0^2 , χ_1^2 , χ_2^2 and χ_3^2 . For each grid point in the $(\sin^2 2\theta_{14}, \Delta m_{41}^2)$ phase space, calculate

- 1. $\Delta \chi^2_{data} = \chi^2_0 \chi^2_1$ for data
- 2. $\Delta\chi^2_{H_0}=\chi^2_2$ using Asimov MC set assuming H $_0$ (3ν) is true
- 3. $\Delta\chi^2_{H_1} = -\chi^2_3$ using Asimov MC set assuming ${\rm H_1}~(4\nu)$ is true

4.
$$CL_{s} = \frac{1-p_{1}}{1-p_{0}} = \frac{1+erf\left(\frac{\Delta\chi_{H_{1}}^{2} - \Delta\chi_{data}^{2}}{\sqrt{8|\Delta\chi_{H_{1}}^{2}|}}\right)}{1+erf\left(\frac{\Delta\chi_{H_{0}}^{2} - \Delta\chi_{data}^{2}}{\sqrt{8|\Delta\chi_{H_{0}}^{2}|}}\right)}$$

5. set $\mathrm{CL_s} < 0.05$ for 95% $\mathrm{CL_s}$ limit contour